Electrochemistry of Fe3+/2+ at highly oriented pyrolytic graphite (HOPG) electrodes: kinetics, identification of major electroactive sites and time effects on the response.

نویسندگان

  • Guohui Zhang
  • Sze-Yin Tan
  • Anisha N Patel
  • Patrick R Unwin
چکیده

The electrochemistry of the Fe3+/2+ redox couple has been studied on highly oriented pyrolytic graphite (HOPG) samples that differ in step edge density by 2 orders of magnitude, to elucidate the effect of surface structure on the electron transfer (ET) kinetics. Macroscopic cyclic voltammetry measurements in a droplet-cell arrangement, highlight that the Fe3+/2+ process is characterised by slow ET kinetics on HOPG and that step edge coverage has little effect on the electrochemistry of Fe3+/2+. A standard heterogeneous ET rate constant of ∼5 × 10-5 cm s-1 for freshly cleaved HOPG was derived from simulation of the experimental results, which fell into the range of the values reported for metal electrodes, e.g. platinum and gold, despite the remarkable difference in density of electronic states (DOS) between HOPG and metal electrodes. This provides further evidence that outer-sphere redox processes on metal and sp2 carbon electrodes appear to be adiabatic. Complementary surface electroactivity mapping of HOPG, using scanning electrochemical cell microscopy, reveal the basal plane to be the predominant site for the Fe3+/2+ redox process. It is found that time after cleavage of the HOPG surface has an impact on the surface wettability (and surface contamination), as determined by contact angle measurements, and that this leads to a slow deterioration of the kinetics. These studies further confirm the importance of understanding and evaluating surface structure and history effects in HOPG electrochemistry, and how high resolution measurements, coupled with macroscopic studies provide a holistic view of electrochemical processes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrochemistry at highly oriented pyrolytic graphite (HOPG): lower limit for the kinetics of outer-sphere redox processes and general implications for electron transfer models.

The electron transfer (ET) kinetics of three redox couples in aqueous solution, IrCl6(2-/3-), Ru(NH3)6(3+/2+) and Fe(CN)6(4-/3-), on different grades of highly oriented pyrolytic graphite (HOPG) have been investigated in a droplet-cell setup. This simple configuration allows measurements to be made on a very short time scale after cleavage of HOPG, so as to minimise possible effects from (atmos...

متن کامل

Electrochemistry using self-assembled DNA monolayers on highly oriented pyrolytic graphite.

Duplex DNA functionalized with pyrene has been utilized to fabricate DNA-modified electrodes on highly oriented pyrolytic graphite (HOPG). Films have been characterized using AFM and radioactive labeling as well as electrochemically. The data obtained are consistent with a close-packed structure in the film with helices oriented in a nearly upright orientation, as seen earlier with the fabricat...

متن کامل

Molecular functionalization of graphite surfaces: basal plane versus step edge electrochemical activity.

The chemical functionalization of carbon surfaces has myriad applications, from tailored sensors to electrocatalysts. Here, the adsorption and electrochemistry of anthraquinone-2,6-disulfonate (AQDS) is studied on highly oriented pyrolytic graphite (HOPG) as a model sp(2) surface. A major focus is to elucidate whether adsorbed electroactive AQDS can be used as a marker of step edges, which have...

متن کامل

Nanoscale electrochemical patterning reveals the active sites for catechol oxidation at graphite surfaces.

Graphite-based electrodes (graphite, graphene, and nanotubes) are used widely in electrochemistry, and there is a long-standing view that graphite step edges are needed to catalyze many reactions, with the basal surface considered to be inert. In the present work, this model was tested directly for the first time using scanning electrochemical cell microscopy reactive patterning and shown to be...

متن کامل

nhancement of adsorption on graphite (HOPG) by modification of surface chemical functionality and morphology

The effects of chemical functional groups and surface morphology on the adsorption /desorption behavior of a model non-polar organic adsorbate (propane) on model carbonaceous surfaces [air-cleaved highly oriented pyrolytic graphite (HOPG) and plasma-oxidized HOPG], were investigated using temperature-programmed desorption (TPD). Oxygenand hydrogen-containing functional groups exist on both air-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 18 47  شماره 

صفحات  -

تاریخ انتشار 2016